您当前的位置:首页 > 养生常识

大数据运营架构体系(数据标签体系架构一般分为)

时间:2024-08-13 15:20:56

本篇目录:

1、大数据中间层架构2、数据平台整体架构篇3、如何架构大数据系统hadoop

大数据中间层架构

其生态系统从0版的三层架构演变为现在的四层架构:底层——存储层 现在互联网数据量达到PB级,传统的存储方式已无法满足高效的IO性能和成本要求,Hadoop的分布式数据存储和管理技术解决了这一难题。

教育大数据六层架构是: 数据源层:包括传统的数据库,数据仓库,分布式数据库,NOSQL数据库,半结构化数据,无结构化数据,爬虫,日志系统等,是大数据平台的数据产生机构。

大数据运营架构体系(数据标签体系架构一般分为)-图1

基础层 第一层作为整个大数据技术架构基础的最底层,也是基础层。要实现大数据规模的应用,企业需要一个高度自动化的、可横向扩展的存储和计算平台。这个基础设施需要从以前的存储孤岛发展为具有共享能力的高容量存储池。

数据存储:公司需要存储将通过大数据架构处理的数据。一般而言,数据将存储在数据湖中,这是一个可以轻松扩展的大型非结构化数据库。

数据平台整体架构篇

虽然Kappa架构看起来简洁,但实施难度相对较高,尤其是对于数据重播部分。适用场景:和Lambda类似,改架构是针对Lambda的优化。

数据存储:指的便是数据仓库的建设了,简略来说能够分为事务数据层(DW)、指标层、维度层、汇总层(DWA)。数据同享层:表明在数据仓库与事务体系间提供数据同享服务。

大数据运营架构体系(数据标签体系架构一般分为)-图2

平台SAN架构主要面向中大型高清监控系统,前端路数成百上千甚至上万。一般多采用IPSAN或FCSAN搭建高清视频存储系统。作为监控平台的重要组成部分,前端监控数据通过录像存储管理模块存储到SAN中。

Spark Spark 是在 Hadoop 的基础上进行了一些架构上的改良。Spark 与Hadoop 最大的不同点在于,Hadoop 使用硬盘来存储数据,而Spark 使用内存来存储数据,因此 Spark 可以提供超过 Ha?doop 100 倍的运算速度。

云计算的体系架构包括:应用层、平台层、基础设施层和数据中心层。应用层:应用层是最顶层的云计算服务层,包含了各种不同领域的应用服务。此层的服务是面向用户的,通常是通过Web界面或API提供。

整体架构下面的图是我们目前使用的数据平台架构图,其实大多公司应该都差不多: 请点击输入图片描述 逻辑上,一般都有数据采集层、数据存储与分析层、数据共享层、数据应用层。可能叫法有所不同,本质上的角色都大同小异。

大数据运营架构体系(数据标签体系架构一般分为)-图3

如何架构大数据系统hadoop

1、在海量数据下,数据冗余模块往往成为整个系统的瓶颈,建议使用一些比较快的内存NoSQL来冗余原始数据,并采用尽可能多的节点进行并行冗余;或者也完全可以在Hadoop中执行批量Map,进行数据格式的转化。

2、Hadoop分布式文件系统(HDFS)将数据文件切割成数据块,并将其存储在多个节点之内,以提供容错性和高性能。除了大量的多个节点的聚合I/O,性能通常取决于数据块的大小——如128MB。

3、Hadoop通用:提供Hadoop模块所需要的Java类库和工具。Hadoop YARN:提供任务调度和集群资源管理功能。Hadoop HDFS:分布式文件系统,提供高吞吐量的应用程序数据访问方式。

4、Hadoop: 一个开源的分布式存储、分布式计算平台.(基于Apache)Hadoop的组成:HDFS:分布式文件系统,存储海量的数据。MapReduce:并行处理框架,实现任务分解和调度。

到此,以上就是小编对于数据标签体系架构一般分为的问题就介绍到这了,希望介绍的几点解答对大家有用,有任何问题和不懂的,欢迎各位老师在评论区讨论,给我留言。

数据

最新文章